
Best Practices for Deploying & Scaling Embedded Analytics 1

Best Practices
for Deploying &
Scaling Embedded
Analytics

Best Practices for Deploying & Scaling Embedded Analytics 2

Contents
Introduction 3

Environmental Architecture 4

Application Design 5

Deployment 6

Packaging and Deployment Workflow 7

Conclusion 11

About insightsoftware 12

Best Practices for Deploying & Scaling Embedded Analytics 2

Best Practices for Deploying & Scaling Embedded Analytics 3

Introduction
Like every other feature in an application, embedded dashboards and reports are constantly
evolving. Analytics features that set applications apart five years ago—like data visualizations and
interactive reports—are now considered the bare minimum. Even once-modern capabilities like
embedded self-service analytics are now commonplace.

Today, sophisticated capabilities such as adaptive security, predictive analytics, workflow, and write-
back are taking analytics far beyond basic dashboards and reports. With cutting-edge capabilities
like these, application teams are able to drive revenue and differentiate their products from
the competition.

As embedded analytics becomes increasingly complex, deploying and scaling it gets more
complicated. What should development, IT, and DevOps teams keep in mind when embedding
analytics in their applications?

This ebook explains how to simplify the deployment and scalability of your embedded analytics, along
with important considerations for your environment architecture, application design, and deployment.

Best Practices for Deploying & Scaling Embedded Analytics 4

Environmental Architecture
A typical web architecture is hosted behind a load balancer. The web server communicates with the
database to retrieve data and present it to the user.

An embedded analytics architecture is very similar, since it’s also dealing with a web application
that happens to be communicating with another parent application. But for a successful embedded
analytics application, a sound database with schema designed for analytics will better serve your
end users. Some of the strategies for an analytics-oriented database schema include flattened and
aggregated tables.

User

ELB SecureKey

Logi app server

Portal app serverELB

ELB
dashboards.local

EBS Storage
Engine and
Cache Files

EFS Share
Error Logs

Shared Files DB
Bookmarks
SecureKey

Scheduler Tasks

Scheduled
Reports

Relational
Database

dashboards.customer.com

insights.customer.com

VPC

EC2/VM instance 1

EC2/VM instance n

Embedded
Analytics

Web Server
Scheduler

Users Internet

SSO

Load Balancer
File Server

Email/SMTP

Scheduling Service

DBMS

Parent App(s)

Analytics App
(Multiple Web Servers)

Best Practices for Deploying & Scaling Embedded Analytics 4

TYPICAL CLOUD ENVIRONMENT

You can see an example of a typical cloud deployment below. Servers are deployed to multiple
Availability Zones with load balancers set to target them—ensuring they can carry out the additional
features of embedded analytics without negatively impacting application performance, as well as
accessing the data needed to supply the right analytics to customers.

Best Practices for Deploying & Scaling Embedded Analytics 5

CONTAINERS

 Lightweight

 Simple to deploy and scale

 Shared resource constraints

PHYSICAL SERVERS / VIRTUAL
MACHINES (VMS)

 Traditional, robust model

 Flexible delivering multiple services

 Environment Dependent

 Slower process to generate and maintain

Containers are particularly useful for
microservice-oriented architectures with
distributable services. They’re also good for
prototyping and can be replicated relatively
quickly to meet demand. However, their file
storage is not persistent and requires external
tools to support.

Physical servers and virtual machines
have been tried and tested for at least 20
years, so you can package multiple services
and capabilities into a virtual machine and
still deliver in a load balance environment.
VMs are good at supporting monolithic

Application Design

application architectures as well as handling
multiple functionalities.

VMs do have some drawbacks. They are
environment dependent. You cannot have a
virtual machine that’s hosted in, say, Windows,
and then switch over to a Linux container.
Their turnaround time is also slightly longer
than containers.

Nevertheless, the flexibility of the services that
can be generalized through VMs is good for
establishing embedded analytics. Depending
on your capabilities, you can choose either a
VM or a container-based approach.

The next step is to consider how to package and host your analytics application. Traditionally, the
application is hosted on a physical server or a virtual machine (VM). However, some application teams
are now migrating to containers. There’s a lot of buzz around how containers can streamline your
deployments. Both options—VMs and containers—are still relevant. Your decision should be based on
your company’s specific needs.

Best Practices for Deploying & Scaling Embedded Analytics 6

In a typical environment for embedded analytics, the traditional deployment model has involved
a delivery mechanism. You might host the mechanism, or you might provide it as a service to
your end customers. Though on-premises hosting is the best option for delivering mission-critical
services, the ease of deployment and maintenance with cloud hosting makes it the better option for
embedded analytics.

What are the benefits and drawbacks of hosting on premises or
in the cloud?

Deployment

Hosting in the cloud makes scaling
considerably easier. All you have to do is script
it out, request a virtual machine (or docker
containers), and within a matter of minutes
your environment has scaled to cope with
additional traffic. While the cloud often has
a low cost of entry, as you grow and scale
your costs may increase and you’ll become
more heavily reliant on your vendor. But the
cloud solves many of the drawbacks of the
on-premises model. It’s lower maintenance,
as the vendor takes care of the hardware.
Upgrading technology is easier, and doesn’t
come with the risk of downtime. And, you can
scale dynamically.

Because it makes scaling easy, cloud hosting
is recommended—as long as you keep an eye
on expenses.

CLOUD

 Lightweight

 Simple to deploy and scale

 Latest technology stack

 Scaling can get expensive

 Potentially tied to one vendor

The main benefit of hosting your application
within your own environment or colo data
center is it costs less. Because you are in
charge of your architecture, you can decide
how to procure and scale analytics. Plus, you
can maintain complete control over how you
deliver your services.

There are some drawbacks of hosting on
premises, however. The turnaround time to
procure and deliver on hardware is longer,
and the hardware itself is more difficult and
expensive to upgrade. Crucially, scaling is less
straightforward with self-hosting than it is when
in the cloud. You will have to pre-determine the
size of your environment, or risk being limited in
the availability of your application.

ON PREMISES

 Lower cost

 Full control over all aspects of hosting

 Capacity must be pre-determined

 High availability is limited

 Maintenance is more difficult

 Technology upgrades can be expensive

Best Practices for Deploying & Scaling Embedded Analytics 7

Packaging and Deployment Workflow

Here, we outline a typical phasing strategy
used by many application teams:

Your embedded analytics solution should work seamlessly with your current application. When built
as a web application, embedded analytics platforms fit well into modern code management and
deployment situations. Deep integration means your development team can leverage their existing
tools and processes.

A combination of code management and scripted deployment processes helps add value by
extending the analytics features in your application. The best way to enhance features is with a
phased approach.

Read more about data environments in the white paper: Toward a Modern Data Architecture for
Embedded Analytics.

PHASE 1

> Start with developer-
defined, managed
dashboard content.

> Provide self-service
features with limited sets of
data. Limits could include
certain scopes (for example,
expose detail-level data to
users within constraints of a
specific territory, or choose a
category and sub-category
combination within a limited
timeframe like a quarter
or a year) or higher-order
aggregates (such as at the
state level vs. zip code level).

> Monitor how users interact
with data and compare with
how it performs.

PHASE NEXT

> Iterate over prior phase.

> Review enhancements
provided by the embedded
analytics platform over
newer versions.

> Add or remove features
based on user feedback.

PHASE 2

> Review database and
application performance
and fine-tune systems by
improving reporting data
models, adding database
indexes, increasing
application server resources,
and so on.

> Expose additional datasets
and more granular
dashboards with interactive
drilldowns based on user
feedback from prior phase.

> Monitor for database and
application performance.

Best Practices for Deploying & Scaling Embedded Analytics 7

https://insightsoftware.com/resources/toward-a-modern-data-architecture-for-embedded-analytics/
https://insightsoftware.com/resources/toward-a-modern-data-architecture-for-embedded-analytics/

Best Practices for Deploying & Scaling Embedded Analytics 8

Consider this typical workflow: Developer(s) >
GIT/SCM > Jenkins/CI > Deployment Scripting >
Server Environment.

Development and/or DevOps configures the
embedded analytics solution in a development
environment, either using the integrated
development environment (IDE) provided
by the embedded analytics vendor or a web
interface. Multiple developers can collaborate
on the same effort. Configuration definitions
(and code) are committed to a source
code management system. Once feature
development is complete, the code is tagged
for release. DevOps captures a tagged version

Multiple developers
can collaborate on the
same effort.

of the software, packages it, and deploys
to a web server environment. DevOps can
use scripting tools to automate packaging
software, procure server resources, and deploy
software to servers.

How Can This Phasing Strategy Be Tied to Code
Versioning and Deployment Workflows?

Best Practices for Deploying & Scaling Embedded Analytics 9

Code Versioning and
Packaging an Embedded
Analytics Application
Most development shops use a code versioning
system to maintain their application source
code. Common tools include GIT, (Microsoft)
TFS, and SVN. Your embedded analytics
platform should be able to leverage these
tools to give developers a similar level of code
management and code sharing capabilities.

An embedded analytics solution includes an
engine and a developer-defined configuration
which drives the engine to generate content
for end users. Configuration definitions are
typically maintained in XML or JSON files.

You have two options in versioning code:

1. Commit configuration definitions in a
source code management system, then
package engine files separately and
handle directly in the deployment step.

2. Commit a complete solution, including
configuration definitions and engine, to a
source code management (SCM) system.

If you maintain configuration definitions
separate from engine files, you’ll see a few
benefits—including the ability to leverage
partial deployments for smaller, incremental
changes. This is due to a smaller set of files
needing to be updated and deployed.

However, since modern source code
management systems are able to support
larger file structures, maintaining a complete
solution in the SCM allows developers
to streamline the delivery of product
enhancements. It is recommended to maintain
your complete embedded analytics solution in
your SCM.

Best Practices for Deploying & Scaling Embedded Analytics 99

Best Practices for Deploying & Scaling Embedded Analytics 10

Deployment
Most software shops nowadays maintain some
form of scripting to simplify the deployment of
applications to server environments. Common
tools include Jenkins, Chef, Ansible, Puppet,
TFS, and Octopus. These tools provide two
main benefits:

1. Script or automate compiling and/or
packaging of software and prepare for
deployment

2. Script or automate setup of environment
and deploy software to environment

Integrating embedded analytics software into
your deployment workflow can be seamless.
You can tie it with your existing application
deployment cycle or set it up on a separate

workflow. The level of integration depends on
how tightly your current application’s features
are coupled with your embedded analytics
solution. Most application teams tend to
maintain a decoupled solution, which allows
for delivering enhancements to embedded
dashboards and reports at a different pace
from rest of your application suite.

Defining a sound workflow for code
management and deployment will allow
your product team to quickly identify feature
requests from customers, develop and test
changes, and deliver enhancements to
customers in a flexible, phased cycle.

MANUAL SCRIPTED CI/CD

> Define Feature
development and delivery
lifecycle that suits your
environment

> Test manual deployment of
application

> Review application
performance and adjust
web server capacity and
environment configurations

> Implement scripts to
automate packaging and
deploying application

> Consider Configuration
updates separate from
Engine upgrades

> Build cadence to deliver
features regularly and
often

Best Practices for Deploying & Scaling Embedded Analytics 10

Best Practices for Deploying & Scaling Embedded Analytics 11

Conclusion
Embedding analytics in your application
doesn’t have to be a one-step undertaking. In
fact, rolling out features gradually is beneficial
because it allows you to progressively improve
your application. You can get new capabilities
out the door quickly, test them with customers,
and constantly innovate.

By using an embedded analytics platform,
you can pick and choose what you deliver
to customers and add new capabilities over
time. Choose a platform that integrates with
industry-standard products and services (such
as cloud environments) and is built to fit into
your complex environment and infrastructure.

11Best Practices for Deploying & Scaling Embedded Analytics

US +1 919 872 7800
UK +44 (0) 845 467 4448

AU +61 2 8985 7777
insightsoftware.com

©2022 insightsoftware. All Rights Reserved.

About insightsoftware
insightsoftware is a leading provider of reporting, analytics, and
performance management solutions. Over 30,000 organizations worldwide
rely on us to support business needs in the areas of accounting, finance,
operations, supply chain, tax, budgeting, planning, HR, and disclosure
management. We enable the Office of the CFO to connect to and make
sense of their data in real time so they can proactively drive greater
financial intelligence across their organization. Our best-in-class
solutions provide customers with increased productivity,
visibility, accuracy, and compliance.

Logi Embedded Analytics:
Purpose-Built for Software Teams
Product teams need intuitive analytics and data visualization capabilities in their applications,
purpose-built for every users’ unique role and skills. Logi’s embedded analytics solutions, by
insightsoftware, empower you to design and deploy analytics into the fabric of your organization
and products. These analytics integrate with your existing workflows and security models
providing a seamless experience where anyone can analyze data, share insights, and make
informed decisions.

Learn more at insightsoftware.com/logi-analytics/.

http://www.insightsoftware.com
http://www.insightsoftware.com/logi-analytics/?utm_source=print&utm_medium=pdf&utm_campaign=22-06-WP-BestPracticesDeployingScalingEmbeddedAnalytics-Logi

